p53 down-regulates phosphatase and tensin homologue deleted on chromosome 10 protein stability partially through caspase-mediated degradation in cells with proteasome dysfunction.
نویسندگان
چکیده
There has been intense investigation regarding the interaction between the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and p53 tumor suppressors. p53 has been shown to up-regulate PTEN expression as a transcriptional activator. However, clinical observations by immunohistochemistry studies indicate that significant increases in p53 protein levels coexist with reduced or absent expression of PTEN protein in a variety of neoplasias. In this study, we propose a mechanism that begins to explain how p53 can both up-regulate and down-regulate PTEN. We have found that PTEN protein is down-regulated under proteasome dysfunction induced by proteasome inhibitor MG132 in both human lymphoblast cells and MCF7 cells. The reduction of PTEN is coincident with elevated p53 protein levels and the association between PTEN and p53 but independent of its phosphatase activities. Quantitative reverse transcription-PCR indicates that proteasome inhibition does not reduce PTEN message levels but affects PTEN protein stability. The p53 inhibitor, pifithrin-alpha, is able to attenuate the effect of proteasome inhibition. Using ectopic expression studies in p53-null mouse embryonic fibroblasts and p53/PTEN-null PC3 cells, we show that PTEN is more stable in p53-null cells compared with p53-expressing cells. Inhibition of caspases, the downstream targets of p53, particularly caspase-3, can partially restore the stability of PTEN. This study provides the first evidence that p53 is able to down-regulate PTEN protein stability in stressed cells. Our study sheds some light on the mechanisms that regulate PTEN protein stability, which is important to fully elucidate to comprehend the broad neoplastic manifestations of Cowden syndrome/Bannayan-Riley-Ruvalcaba and sporadic cancers.
منابع مشابه
Proteasome Dysfunction through Caspase-Mediated Degradation in Cells with Deleted on Chromosome 10 Protein Stability Partially p53 Down-Regulates Phosphatase and Tensin Homologue
There has been intense investigation regarding the interaction between the phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and p53 tumor suppressors. p53 has been shown to up-regulate PTEN expression as a transcriptional activator. However, clinical observations by immunohistochemistry studies indicate that significant increases in p53 protein levels coexist with reduced or abs...
متن کاملBAG5 regulates PTEN stability in MCF-7 cell line
The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) is a tumor-suppressing lipid phosphatase that is frequently absent in breast tumors. Thus, the stability of PTEN is essential for tumor prevention and therapy. The ubiquitin-proteasome pathway has an important role in regulating the functions of PTEN. Specifically, carboxyl terminus Hsp70-interacting protein (CHIP), the E3 ubiqu...
متن کاملNuclear-cytoplasmic partitioning of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) differentially regulates the cell cycle and apoptosis.
Phosphatase and tensin homologue deleted on chromosome 10 (PTEN), a tumor suppressor phosphatase that dephosphorylates both protein and lipid substrates, is found to be mutated in both heritable and sporadic breast cancer. Cellular PTEN has been shown to regulate Akt phosphorylation, mitogen-activated protein kinase (MAPK) phosphorylation, p27(kip1), and cyclin D1 protein levels. Additionally, ...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملMatrine inhibits diethylnitrosamine-induced HCC proliferation in rats through inducing apoptosis via p53, Bax-dependent caspase-3 activation pathway and down-regulating MLCK overexpression
The proliferation of hepatocellular carcinoma (HCC) cells is one of the leading causes of liver cancer mortality in humans. The inhibiting effects of matrine on HCC cell proliferation have been studied, but the mechanism of that inhibition has not been fully elucidated. Since, apoptosis plays an important role in HCC cell proliferation. We examined the apoptosis-inducing effect of matrine on tu...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Cancer research
دوره 66 12 شماره
صفحات -
تاریخ انتشار 2006